Using Pattern Matching to inspect packaging prints

A typical task in print inspection is to identify a product out of multiple variants and then to further inspect the integrity of the packaging (presence of labels, printing errors, etc.).

Even a small product palette can quickly lead to hundreds of packaging subtypes, especially in the food industry where seasonal and regional ad campaigns are common and suppliers are often switched. This is why the systems usually have a learning phase, during which identifiers and inspection rules are stored in a database, and an operation phase, during which pattern matching algorithms are used for presence and position detection.

Most image processing libraries provide pattern matching algorithms both based on normalized cross-correlation and on geometric descriptors. While the latter are advantageous when looking for scaled or partially occluded templates and can be quick, they fail with low-contrast images and gradients. Because print designs can be considered completely random, normalized cross-correlation based algorithms are the standard choice of solution.

The concept

The squared Euclidian distance can be used as a similarity measure between two overlaying images.

Assuming a template image \(w(x,y) \) of size \(K \times L \) is placed at position \((i,j)\) in a target image, it is defined as:

\[
d^2(i,j) = \sum_{x=0}^{L-1} \sum_{y=0}^{K-1} [w(x,y) - f(x+i, y+j)]^2
\]

Knowing that the total energy of the template \(\sum_{x=0}^{L-1} \sum_{y=0}^{K-1} w(x,y)^2 \) is constant and if we assume the intensity in the target image is more or less evenly distributed \(\sum_{x=0}^{L-1} \sum_{y=0}^{K-1} f(x+i,y+j)^2 \) is almost constant, we are left with the cross-correlation term:

\[
c(i,j) = \sum_{x=0}^{L-1} \sum_{y=0}^{K-1} w(x,y) f(x+i, y+j)
\]

It gives a measure of how similar target and template images are when overlapped at \((i,j)\). However, if the image energy varies with position, comparing these values fails. For example, the correlation between the template and an exact replica in the target image may produce a lower value than the correlation between the template and a very bright spot. To resolve this, the correlation term is normalized by subtracting the average intensity of the template respective the average intensity of the target image in the region currently overlapped by the template.
If a template is rotated by a very small angle (<5%), normalized cross-correlation algorithms can typically detect it with a lowered matching score. Rotations of higher degrees require different methods, which are all more or less sophisticated version of performing the same calculations multiple times on rotated images.

For example, the NI Vision library samples images alongside a rotation-invariant path, such as a circle. Rotating the image is then equivalent to shifting the array that contains the sample points’ intensities. The correlation is then defined as a cyclic correlation: A sample pixel taken from the image is correlated with the respective pixel taken from the target, the template sample array is shifted by one and correlated again, etc., until the original sample pixel (and rotation angle) is reached. The maximum correlation value of this sequence is used for evaluation of the match, and its index gives information about the angle. Typically, multiple non-overlapping search circles are considered from one template.

Speeding up the process

Normalized cross-correlation is computationally expensive. To speed it up, sub-sampled images and templates are used for a fast-pass search. Then the results are refined with localized searches in the high-resolution images.

Gaussian pyramids are often used for sub-sampling. The images are first smoothed with a Gaussian filter, and then downsampled to half-size. This is done iteratively and creates a number of layers forming the name-giving pyramid until some desired minimal size is reached. The Gaussian filter acts as a low-pass: If not filtered, high-frequency data in the high-resolution image might be undersampled in the low-resolution images and cause unrepresentative templates (aliasing effect).

![Figure 2: Example of aliasing effect when downsampling images without low-pass-filtering, left: original, middle: aliasing, right: Gaussian downsampling](image)

But pyramid-based sub-sampling is only one way of reducing data to decrease computational load. For example, National Instruments has patented methods based on low-discrepancy-sampling. They rely on pseudo-random points selected according to how accurately they represent their neighborhoods.

First, the template images are sampled with low-discrepancy sequences, such as a Halton sequence, a Sobol sequence or a Faure sequence. These mathematical methods are designed to produce pseudo-random points that avoid each other, which means they do not tend to “clump” like true random numbers. „Intelligent” (structure-aware) sampling can increase the number of significant points for example focusing on edge information.
In the next step, a local stability analysis of the sample points is performed. For this, each point is compared with the points in its neighborhood, and the distance in which they are stable is obtained. “Stable” may mean the intensity value remains within a threshold, but could also include more complex information, such as gradient changes or even texture information.

The points with the largest stable neighborhood are then selected, and used for a first very coarse cross-correlation search in the target image. The neighborhood size is used to obtain a step size for “walking through” the target image, which further decreases the number of calculations needed. From this coarse search, areas with possible matches are identified and then verified or refined in an iterative cross-correlation process which uses sample points with correspondingly decreasing stability/step size.

Color Matching

Adding color information to such pattern matching algorithms is challenging because of the lack of comparison operator for colors. Often, it is done in two to three steps: First, by detecting areas where target and template image have a similar color spectrum, and then by using normal monochrome pattern matching methods on the luminance of target and template image. The results can then be further refined, for example, on the hue plane.

Similarity of a color spectrum itself is something that is best described in a color space based on human perception. NI Vision splits the HSL color space into 14 color bins, with two additional bins for black and white. Target and template are sampled, and a color histogram is formed. The simplest approach to comparing color distributions is to subtract the spectra.

Depending on the number of bins, this can fail to describe similarity in perception, see...
One method to deal with this is to apply some sort of smoothing operator, and redistribute pixels and share them with their neighboring bins. For example, one could share 10% of a bin’s pixels with its neighbors, so if one pixel had 40% of all intensity values, it would give 4% to each of its neighbors and remain with 32%. Another option is fuzzy binning. A pixel is not just assigned to one bin, but is fractionally distributed to neighboring bins according to how close it is to the edge of a bin.

Comparing with the “Golden Template”

After performing pattern matching, the difference between a detected pattern and a so-called golden (perfect) template is calculated. This may provide an evaluation of the quality of the match, or be used for integrity inspection.

Depending on how accurate the alignment is, small adjustments can be helpful, such as ignoring errors directly at overlaying edges by using structure-aware erosion in the subtracted image. However, the most important correction is probably the normalization methods that compensate for changes in color/lighting. An easily implemented method, average matching, uses a scale factor to normalize the average gray value of template and image, whereas more sophisticated methods, such as histogram matching, use lookup-tables to generate similar histograms. As figure 7 shows, it helps to take a look at a subtracted image without normalization, and to understand if the changes are
local or global, and how they affect the histogram.

Figure 6: Normalization: Examples A/B show local and global changes in lighting, which Histogram Matching compensates for. Localized variations in color (C) or reflectivity (D) are better handled by Average Matching.

Case Study "Soup Jar Inspection"

All of those methods come together in the following case study: A common problem in food production is that lids do not match the contents of their respective containers. In this case, a 1600x1200px camera was triggered by an existing PLC to take color pictures of soup jars. They were moving at 820 units per minute on a conveyor belt, and a lighting controller was used together with a LED and a polarizing filter to acquire images without motion blur or glares. The triggering was not optimal due to variations in the belts’ speed, and could have been easily improved with a photoelectric sensor, but it was sufficient to extract the lids with image processing (based on NI
First, the lids are extracted from the background with an algorithm finding a best-fit circle (based on the Hough-transform). As the random rotation would be a significant slowing factor for all further Pattern Matching steps, this is corrected as the next step. In this case study, the company logo (Figure 8) is always printed onto the lids and considered as the reference to decide where the top of the image is. It is detected with Pattern Matching (based on normalized cross-correlation and cyclical correlation), and the result is used to rotate the lid.

Finally, a two-phase matching algorithm is employed. First, the color spectra of sub-sampled images (obtained in the same manner as with color pattern matching) are used for a first and fast classification, and reduce the number of possible lid types from about 90 to 10-12. In a further step, classical pattern matching is applied, checking for the presence of unique identifiers, and creating detection scores. As the calculations are independent for each lid subtype, they are easily parallelized. The scores from each matching build a feature vector that is classified with the Nearest Neighbor method.